A Scalable Discontinuous Galerkin Atmospheric Dynamical Core

Ram Nair

Scientific Computing Division

National Center for Atmospheric Research (NCAR), Boulder, Colorado 80305.

- SciDAC/CCPP Funded Project Team Members:
 - Henry Tufo (PI, NCAR)
 - Phil Rasch, Ram Nair (Co-Is, NCAR)
 - Hae-Won Choi, Jack Chen (Postdocs, CU)
 - Mike Levy, Theron Voran (Graduate Students, CU)

A Scalable DG Atmospheric Dynamical Core

Project Overview

- Objective is to develop a scalable conservative dynamical core for the Community Climate System Model (CCSM) that addresses atmospheric transport issues such as mass conservation and monotonicity preservation.
- Building blocks are the High-Order Method Modeling Environment (HOMME), conservative discontinuous Galerkin (DG) method implemented in HOMME framework, and the vertical Lagrangian coordinate scheme.
- Targeting large-scale parallelism $\mathcal{O}(100\text{K})$ processors

The DG Baroclinic Model:

- High-order nodal DG horizontal discretization.
- Vertical Lagrangian coordinates (conservative remapping).
- Preliminary results for the baroclinic instability test of Jablonowski & Williamson.
- Untuned version exhibits good performance results up to 1024 processors.

This project is supported by the DOE-SciDAC program under award #DE-FG02-04ER63870.

